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Abstract
We obtain the self-energy of the electronic propagator due to the presence of Holstein polarons
within the first Born approximation. This leads to a renormalization of the Fermi velocity of
1%. We further compute the optical conductivity of the system at the Dirac point and at finite
doping within the Kubo formula. We argue that the effects due to Holstein phonons are
negligible and that the Boltzmann approach, which does not include inter-band transitions and
can thus not treat optical phonons due to their high energy of h̄ω0 ∼ 0.1–0.2 eV, remains valid.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Three years ago, Geim, Novoselov and co-workers succeeded
in isolating and contacting a single layer of graphite
(graphene) [1]. Contrary to common wisdom, this
experiment showed that true two-dimensional lattices are
thermodynamically stable [2, 3]. This stability comes about
because the system gently crumples to the third direction,
forming ripples [4]. It is therefore an important problem
to study the effect of out-of-plane phonons on the electronic
properties of the system. In contrast to two-dimensional
electron systems in semiconductor heterostructures, where
(scalar) electrons interact with bulk [5] or surface [6] phonons,
in graphene there are two-dimensional in-plane as well as out-
of-plane vibrational modes to which Dirac (spinor) fermions
will couple.

There are two different vertex types modeling the
interaction of electrons with optical phonons. First, due
to the atomic displacement within the plane, the tunneling
matrix element between two carbon atoms varies. This gives
rise to a Su–Schrieffer–Heeger-type coupling (current–current
coupling) [7]. The two-dimensional gage field is composed of
longitudinal optical (LO) and transverse optical (TO) phonons,
which are degenerate at q = 0. This vertex type is also
found from symmetry arguments [8]. There are also out-of-
plane vibrations. These lattice displacements are symmetric
with respect to their neighboring atoms and thus couple to
the electronic densities. The optical (ZO) modes can then be
described within the Holstein model [9]. For a recent account

on the Green’s function of the Holstein polaron, see [10] and
references therein.

Out-of-plane modes are energetically smaller than in-
plane vibrations due to the hybridization of the sp2-orbitals
within the graphene sheet. A tight-binding calculation
including nearest and second-nearest neighbors yields ωZO ≈
ωLO/2 for the optical branch close to the �-point [11]. For a
first-principle calculation of the phonon spectra, see the work
by Wirtz and Rubio [12]. The effect of the electron–phonon
coupling on the local density of states of zig-zag graphene
ribbons has been studied by Sasaki et al [13]. The effect
of the optical phonons on the Raman spectrum of disordered
graphene was studied by Castro Neto and Guinea [14].

The effect of Holstein phonons on transport properties
has been receiving renewed interest in the context of the
one-dimensional Holstein–Hubbard model [15]. Here, we
will discuss Holstein phonons in graphene for the following
reason. It is currently believed that transport properties
can be described well within a semi-classical Boltzmann
approach [16–18]. This implies well-defined quasi-particles,
i.e. only one band is considered and inter-band transitions
are ruled out. Doing so, several scattering mechanisms
have been discussed, ranging from local defects (vacancies or
substitutions), long-ranged Coulomb impurities in the substrate
or due to adsorbed atoms to acoustical phonons [19, 20].

Optical phonons cannot be treated within the one-band
Boltzmann approach3 since they would induce inter-band
transitions at typical densities of n � 5 × 1012 cm−2. It

3 For a two-band formulation of the Boltzmann equation, see [21].
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is therefore crucial to assess this scattering mechanism via
the Kubo formalism. In section 2, we present our model
for Holstein phonons and calculate the electronic self-energy
within the first Born approximation in section 3. We further
compute the optical conductivity in section 4, using the full
Green’s function, but neglecting vertex corrections. We close
with conclusions and outlook.

2. The effective model

In two-dimensional graphene sheets, first-principle calcula-
tions reveal that the Born–Oppenheimer approximation is not
valid for doped graphene sheets [22]. Fröhlich polarons [23]
are thus not a good starting point to describe electron–lattice in-
teraction in graphene. Here, we present a study of the electron–
lattice coupling due to localized Holstein phonons in a two-
dimensional honeycomb lattice, thus treating the ZO phonons
(out-of-plane vibrations).

The honeycomb lattice (the lattice of graphene) is made
of two interpenetrating triangular lattices, defining two non-
equivalent sites, usually labeled as A and B sites [24]. The
model Hamiltonian for ZO polarons in graphene reads as
follows:

H−t
∑

i,σ δ

[
a†

σ (Ri)bσ (Ri + δ) + H.c.
]+

∑

q

ωqc†
qcq+Vep (1)

where a†
σ (Ri) (b†

σ (Ri)) creates an electron at an atom of the
A (B) sub-lattice and c†

q are creation phonon operators. The
energy ωq is the dispersion of the ZO phonon and Vep is the
electron–phonon interaction. We model the coupling to the ZO
phonons as the usual density–density coupling [25]

Vep = D
∑

σ,i, j

[
a†

σ (Ri)aσ (Ri) + b†
σ (Ri)bσ (Ri) − 1

]
Q j , (2)

with Q j defined as

Q j =
∑

q

Xqeiq·R j (cq + c†
−q), (3)

and

Xq =
√

h̄2

2M Nωq

(4)

and M is the ion’s mass and N is the number of unit cells in
the crystal. Note that we couple the density with respect to the
half-filled band such that particle–hole symmetry is conserved
by reversing the sign of the coupling constant. In the following,
though, we shall neglect this shift in the bosonic operators.

The effect of Holstein polarons is obtained using ωq �
ω0 and transforming the operators in Hamiltonian (1) to
momentum space. This gives

H = −t
∑

q,σ

(
φqa†

q,σ bq,σ + H.c.
) +

∑

q

ω0c†
qcq + Vep , (5)

with φq = ∑
δ e−iδ·q , δ being the vectors connecting the three

nearest neighbors on the honeycomb lattice, and Vep being
given by

Vep = D
∑

p,q,σ

Xq

(
a†

p,σ ap+q,σ + b†
p,σ bp+q,σ

)
(cq + c†

−q). (6)

Let us comment on the coupling constant D. Due to the
mirror symmetry of the graphene sheet, one might think that
the linear coupling to lattice displacements is zero. But the
mirror symmetry is broken for samples where graphene lies on
top of a SiO2 or SiC substrate (for a discussion, see [8]). To
quantify the coupling constant in terms of the dimensionless
constant g = √

N DX0/ω0, we assume that the coupling
mechanism is due to a variation of the hopping matrix element.
This yields g of the order of unity [14].

3. Second-order perturbation theory

If the phonon energy scale is much smaller than the electronic
energy scale, Migdal’s theorem states that it is sufficient to
calculate the lowest-order self-energy diagram [26]. This
diagram can further be calculated using the bare electron
Green’s function. Still, the importance of electron–phonon
coupling also depends on the dimensionality of the system. For
example, in self-assembled quantum dots, vertex ‘corrections’
to the polarization of an electron–hole pair give rise to charge
cancellation [27], thus changing the optical conductivity
significantly [28]. Also, for A3C60 (A = K, Rb) [29] and for
general one-dimensional systems, [30] Migdal’s theorem is not
valid. Furthermore, electron–electron interaction can affect the
effective electron–phonon interaction [15].

In graphene sheets, electron–electron interaction is
generally neglected, i.e. one assumes a ‘normal’ ground state
at zero doping (one electron per unit cell)—characterized by a
semi-metal. Since the average kinetic and interaction energy
per particle both scale with

√
n where n is the carrier density,

the interaction does not become important at finite doping
either. Electron–electron interaction is also neglected in recent
works on localization [31] even though disorder enhances
the effect of interaction [32]. The same should hold for
the electron–phonon vertex corrections, which results in an
effective electron–electron interaction, and we thus believe that
the assumption of Migdal’s theory is a good starting point to
discuss the Holstein phonons in graphene.

Because of the existence of two sub-lattices, the Green’s
function needs to be written as a 2 × 2 matrix:

Gσ (k, τ ) =
(

GAA,σ (k, τ ) GAB,σ (k, τ )

GBA,σ (k, τ ) GBB,σ (k, τ )

)
(7)

with
GAA,σ (k, τ ) = −〈T ak,σ (τ )a†

k,σ (0)〉 ,

GAB,σ (k, τ ) = −〈T ak,σ (τ )b†
k,σ (0)〉 ,

GBA,σ (k, τ ) = −〈T bk,σ (τ )a†
k,σ (0)〉 ,

GBB,σ (k, τ ) = −〈T bk,σ (τ )b†
k,σ (0)〉 ,

(8)

where τ is the ‘imaginary’ time, and T is the time ordering
operator.

Up to second order in perturbation theory, and after
transforming the time dependence of the Green’s function to
Matsubara frequencies, we obtain the following result:

G = G(0) + G(0)ΣG(0), (9)

2
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where the matrix Σ is defined as

Σ =
(

�AA �AB

�BA �BB

)
, (10)

and the matrix element �αβ is defined by (α, β = A, B)

�αβ(iωn,p) = − 1

β

∑

q,ν

D2 X2
q D(0)(q, iν)

× G(0)
αβ (p − q, iωn − iν). (11)

Because both Xq and D(0)(q, iν) are momentum
independent, i.e. we set ωq = ω0 and the phonon propagator
D(0)(q, iν) is given by

D(0)(q, iν) = 2ω0

(iν)2 − ω2
0

, (12)

the matrix elements of the self-energy matrix can be written
in a simplified form, reading �αβ(iωn) = − 1

β

∑
q,ν D2 X2

0 D(0)

(iν)G(0)
αβ (q, iωn + iν) , where X0 is Xq with ωq replaced by

ω0. Notice that we neglected the constant shift in the self-
energy due to the shift of the bosonic displacement operator,
still present in equation (11). This is consistent, since we also
neglected the Hartree correction to the self-energy.

From the above we can write down a Dyson equation for
the electronic propagator, given by

G = G(0) + G(0)ΣG, (13)

which has to be solved for G. The equation giving the
Matsubara Green’s function for the free electronic system reads

(
iωn −tφ(k)

−tφ∗(k) iωn

)
G(0)(iωn,k) = 1, (14)

and 1 is the 2 × 2 unit matrix. Within the Dirac cone
approximation, which applies in a range of 1 eV, one has
�AB(iωn) = �BA(iωn) = 0. Also, the following result holds,
�AA(iωn) = �BB(iωn) = �(iωn), leading to a simplified
form for the Dyson equation (13), which can be readily solved,
giving

G =

(
iωn − �(iωn) tφ(k)

tφ∗(k) iωn − �(iωn)

)

(iωn − �)(iωn − �) − t2|φ|2 . (15)

The matrix elements of equation (15) can be put into a simpler
form reading

GAA(ωn,k) =
∑

j=±1

1/2

iωn − �(iωn) − j t|φ(k)| , (16)

GAB(ωn,k) =
∑

j=±1

jeiδ(k)/2

iωn − �(iωn) − j t|φ(k)| , (17)

GBA(ωn,k) =
∑

j=±1

je−iδ(k)/2

iωn − �(iωn) − j t|φ(k)| , (18)

GBB(ωn,k) = GAA(ωn,k). (19)

The summation over the bosonic frequency ν in
equation (3) can be performed using standard methods, leading
to

�(iωn) =
∑

q, j=±1

D2 X2
0

1

2

(
N0 + nF( j t|φ(q)|)

iωn − j t|φ(q)| + ω0

+ N0 + 1 − nF( j t|φ(q)|)
iωn − j t|φ(q)| − ω0

)
. (20)

The integrals over the momentum variable in equation (20) can
be computed easily at zero temperature and within the Dirac
cone approximation, yielding an explicit form for the self-
energy.

3.1. Zero doping

At zero temperature and zero chemical potential (that is, at the
neutrality point) the self-energy, denoted by � → �0, has a
simplified form reading

�0(iωn) = g2ω2
0

Nh̄2

∑

q

1

2

(
1

iωn − t|φ(q)|/h̄ − ω0/h̄

+ 1

iωn + t|φ(q)|/h̄ + ω0/h̄

)
(21)

where we have introduced the missing h̄s omitted in the
beginning of this section and g denotes a dimensionless
coupling constant of order unity, defined below equation (6).
Performing the analytical continuation iωn → ω + iδ and
computing the momentum integral in equation (21), one
obtains the retarded self-energy, �ret(ω), of the polaron
problem, which reads

�ret
0 (ω) = Ac

2π

(
gω0

h̄

)2(
− ω

v2
F

ln

∣∣∣∣
(vFkc)

2

ω2 − (ω0/h̄)2

∣∣∣∣

+ ω0/h̄

v2
F

ln

∣∣∣∣
ω + ω0/h̄

ω − ω0/h̄

∣∣∣∣
)

− iπ
Ac

2π

(
gω0

h̄

)2

×
[(

ω

v2
F

− ω0

v2
Fh̄

)
θ(ω − ω0/h̄)θ(vFkc + ω0/h̄ − ω)

−
(

ω

v2
F

+ ω0

v2
Fh̄

)
θ(−ω − ω0/h̄)θ(vFkc + ω0/h̄ + ω)

]
,

(22)

with πk2
c = (2π)2/Ac, Ac = a23

√
3/2, and a = 1.42 Å.

One can easily obtain the renormalization of the
electronic spectrum due to the retarded self-energy induced
by the phonons, using Rayleigh–Schrödinger perturbation
theory [25]. In this scheme, the ω dependence of the self-
energy is replaced by the bare electronic dispersion. Close to
the Dirac point, the dispersion is simply given by ω = ±vFk,
where the upper (lower) sign holds for electrons (holes), and
we obtain the new energy spectrum E(k) from

E(k) = vFh̄k + h̄ Re�ret
0 (vFk) (23)

for the conduction band and

E(k) = −vFh̄k + h̄ Re�ret
0 (−vFk) (24)

3
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Figure 1. Renormalized energy band at the neutrality point, given by
E(k) = ±vF h̄k ± h̄Re�ret

0 (vFk) for two different values of the
coupling constant g.

for the valence band. Electron–hole symmetry is thus
preserved if Re�ret

0 (x) = −Re�ret
0 (−x), which is the case (see

equation (22)).
Considering that vFk is the smallest energy in the problem,

that is, k is very close to the Dirac point, we obtain for
Re�ret

0 (vFk) the result

Re�ret
0 (vFk) = −vFk

Ac

πv2
F

(
gω0

h̄

)2

ln
vFkc

ω0/h̄
. (25)

Considering the out-of-plane optical mode of graphene [12],
which has an energy of ωZ O � 0.1 eV and using g2 = 10, we
obtain

Ac

πv2
F

(
gω0

h̄

)2

ln
vFkc

ω0/h̄
� 0.02. (26)

In figure 1, the renormalized energy dispersion is shown for
various values of the coupling constant. We also included a
large coupling constant g = 10 for better illustration of the
effect of the electron–phonon interaction.

3.2. Finite doping

At finite doping, the one-particle dispersion j |φ(k)| must
be replaced by j |φ(k)| − μ in equations (16)–(19) and
equation (20), where μ = h̄vFkF denotes the Fermi energy.
The retarded self-energy can then be written as �ret

μ (ω) =
�ret

0 (ω + μ/h̄) + ��(ω + μ/h̄), where we have

��(ω) = Ac

2π

(
gω0

h̄

)2

×
(

−ω0/h̄

v2
F

ln

∣∣∣∣
(μ/h̄ − ω)2 − (ω0/h̄)2

ω2 − (ω0/h̄)2

∣∣∣∣

− ω

v2
F

ln

∣∣∣∣
(μ/h̄ − ω − ω0/h̄)(ω − ω0/h̄)

(μ/h̄ − ω + ω0/h̄)(ω + ω0/h̄)

∣∣∣∣
)

− iπ
Ac

2π

(
gω0

h̄

)2 [(
ω

v2
F

+ ω0

v2
Fh̄

)
θ(ω + ω0/h̄)

× θ(μ/h̄ − ω0/h̄ − ω)

−
(

ω

v2
F

− ω0

v2
Fh̄

)
θ(ω − ω0/h̄)θ(μ/h̄ + ω0/h̄ − ω)

]
.

(27)

We note that, for finite doping, �ret
μ (ω) diverges logarithmi-

cally at ω = ±ω0/h̄.

4. Optical conductivity

In this section we want to compute the optical conductivity
of graphene and study how the conductivity of the system
is affected by the out-of-plane (ZO)-phonons. To determine
the conductivity, one needs to know the current operator
jx , which is composed of the paramagnetic and diamagnetic
contributions jx = j P

x + Ax(t) j D
x , each of them given

by [33]

j P
x = − itea

2h̄

∑

k,σ

[(φ(k) − 3)a†
σ (k)bσ (k)

− (φ∗(k) − 3)b†
σ (k)aσ (k)], (28)

and

j D
x = − te2a2

4h̄2

∑

k,σ

[(φ(k) + 3)a†
σ (k)bσ (k)

+ (φ∗(k) + 3)b†
σ (k)aσ (k)]. (29)

The Kubo formula for the conductivity is given by [34]

σxx (ω) = 〈 j D
x 〉

iAs(ω + i0+)
+ �xx (ω + i0+)

ih̄ As(ω + i0+)
, (30)

with As = Nc Ac being the area of the sample, and Ac being
the area of the unit cell, from which it follows that

Reσ(ω) = Dδ(ω) + Im�xx (ω + i0+)

h̄ωAs
, (31)

where D is the charge stiffness, which reads

D = −π
〈 j D

x 〉
As

− π
Re�xx (ω + i0+)

h̄ As
. (32)

The incoherent contribution to the conductivity �xx (ω + i0+)

is obtained from �xx (iωn), with this latter quantity defined
as

�xx (iωn) =
∫ β

0
dτ eiωnτ 〈Tτ j P

x (τ ) j P
x (0)〉. (33)

The relevant quantity Im �xx (ω + i0+) is given by

Im�xx (ω + i0+) = t2e2a2

16h̄2

∫
dε

2π h̄

×
∑

k

∑

λ1,λ2=±1

[nF(ε) − nF(ε + ωh̄)]

× Aλ1(k, ω + ε/h̄)Aλ2(k, ε/h̄) f (k, λ1, λ2), (34)

with Aλ(k, ω) given by

Aλ(k, ω) = −2ImGλ
R(k, ω + i0+) , (35)

4
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Gλ(k, iω) given by

Gλ(k, iωn) = 1

iωn − �(iωn) − (λt|φ(k)| − μ)/h̄
, (36)

and f (k, λ1, λ2) given by

f (k, λ1, λ2) = 2|φ(k) − 3|2 − λ1λ2

[
(φ∗(k) − 3)2 φ2(k)

|φ(k)|2

+ (φ(k) − 3)2 (φ∗(k))2

|φ(k)|2
]
. (37)

Using the fact that
∑

k

φ(k)g(|φ(k)|) =
∑

k

φ∗(k)g(|φ(k)|)

= 1
3

∑

k

|φ(k)|2g(|φ(k)|), (38)

where g(|φ(k)|) is an arbitrary function of the absolute value
of φ(k), and the fact that, in the Dirac cone approximation, one
has

φ2(k)

|φ(k)|2 � ei2π/3[cos(2θ) − i sin(2θ)] , (39)

and a similar expression for the complex conjugate expression
[φ∗(k)]2/|φ(k)|2, one obtains a simplified expression for (34),
given by

Im �xx (ω + i0+) = t2e2a2

16h̄2

×
∫

d ε

2π h̄

∑

k

∑

λ1,λ2=±1

[nF(ε) − nF(ε + ωh̄)]

× Aλ1(k, ω + ε/h̄)Aλ2(k, ε/h̄)

× [18 − 2|φ(k)|2(λ1λ2 + 1)]. (40)

The expression (40) is valid only in the Dirac cone
approximation, and therefore one must replace t|φ(k)| by
vFh̄k and the integral over the momentum can be performed
easily. If one ignores the effect of phonons, the calculation is
straightforward, leading to a conductivity of the form (at zero
doping) [33]

Re σ(ω) = π

2

e2

h

(
1 − (h̄ω)2

18t2

)
tanh

(
ωh̄

4kBT

)
. (41)

One should note that, from equation (41), one has Reσ(0) =
0 for finite T . This is not seen in figure 2, because the
temperature scale is very small.

The solution of equation (40) allows us to determine the
optical conductivity, taking into account the effect of Holstein
phonons. In addition, we mimic the effect of impurities by
adding a small imaginary part � to the self-energy,

Im �(ω) = Im�ep(ω) − � , (42)

where Im�ep(ω) is obtained from equation (22).
There are two types of momentum integrals in (40), which

have the form

In(ε/h̄, ω, λ1, λ2)

=
∫ kc

0
dk

k2n+1

[(A − λ1k)2 + B2][(C − λ2k)2 + D2] , (43)

0 0,2 0,4 0,6 0,8 1

ω in eV

0,96

0,98

1

σ 
in

 [π
/2

(e
2 /h

)]
 

g
2
=0

g
2
=10

g
2
=100

0 0,2 0,4
ω in eV

0

0,1

Δσ
with Re Σ
without Re  Σ

Figure 2. Optical conductivity for two different values of the
coupling constant g at zero doping (T = � = 10−4 eV). Inset: the
relative conductivity �σ = σ(g = 10) − σ(g = 0) with and without
Re�(ω).

with n = 0, 1. The analytical expressions are given in the
appendix. The final energy integration can be performed
numerically.

In figure 2, the conductivity is shown for various coupling
constants g at zero doping and low temperature T and damping
� due to impurity scattering. There is a drop in the conductivity
(relative to the conductivity of a clean system) starting at
around the phonon energy ω0 and reaching a constant value
for ω � 2ω0. Without the real part of the electronic self-
energy, there is a pronounced peak at twice the phonon energy.
This is shown in the inset of figure 2, where we plot �σ =
σ(g = 10) − σ(g = 0) for T = � = 0.0001 eV and
including (respectively, not including) Re�(ω) in the above
expressions. It is thus crucial to include the full self-energy in
the renormalization of the particle Green’s function.

We thus obtain as the main result that there remains no
pronounced structure in the conductivity due to ZO phonons
if the full self-energy is used. We attribute this fact to the
apparently asymmetric way that the self-energy enters into the
Green’s function with respect to the electron ( j = 1) and
hole ( j = −1) channel, which destroys possible interference
between the two carriers (see equation (22)).

In figures 3 and 4, the optical conductivity is shown for
different values of the coupling constant g at μ = 0.05 eV
and μ = 0.1 eV, respectively. The insets show the relative
conductivity due to the electron–phonon interaction, �σ =
σ(g = 10)−σ(g = 0), including (respectively, not including)
Re�(ω) in the above expressions. Again, we see a distinct
difference in the result due to the renormalization of the
electron–hole spectra.

It is clear that the results at finite chemical potential are
markedly different from the results at the neutrality point.
At finite chemical potential the system is characterized by
a Drude-like behavior followed by a strong increase in the
conductivity when the photon frequency reaches a value of
twice the chemical potential. At zero doping there is no
Drude weight and the system response is characterized only
by inter-band transitions. We see only weak renormalization
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Figure 3. Optical conductivity for two different values of the
coupling constant g at μ = 0.05 eV (T = � = 10−4 eV). Inset: the
relative conductivity �σ = σ(g = 10) − σ(g = 0) with and without
Re�(ω).
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Figure 4. Optical conductivity for two different values of the
coupling constant g at μ = 0.1 eV (T = � = 10−4 eV). Inset: the
relative conductivity �σ = σ(g = 10) − σ(g = 0) with and without
Re�(ω).

of the Drude peak due to the Holstein phonons as well as
negligible effects at finite frequencies. We note that the results
for Re σ(ω) when g = 0 were first obtained by Peres et al [24]
and by Gusynin et al [35].

5. Summary

In this paper, we have calculated the effect of Holstein polarons
on the electronic properties of graphene. Holstein polarons
arise through the coupling of out-of-plane optical (ZO) modes
to the conduction electrons, described as Dirac fermions.
Throughout this work, we assumed Migdal’s theorem to be
valid and calculated the electronic self-energy within the first
Born approximation. We find that the Fermi velocity becomes
renormalized within 1%.

The main purpose of this work was to assess the effect
of Holstein phonons on the conductivity within the Kubo
formula. Due to the large phonon energy, electron scattering
from Holstein phonons induces inter-band transitions for
the usual carrier densities (corresponding to a gate voltage
of ∼50 V) and can thus not be treated within the one-
band Boltzmann approach. We thus calculated the optical
conductivity within the Kubo formula, employing the full
Green’s function but neglecting vertex corrections. We find
a pronounced kink-like peak at twice the ZO phonon energy
if only the imaginary part of the self-energy is considered.
This peak vanishes when the real part of the self-energy is
included. Further, we see only weak renormalization of the
Drude peak due to the Holstein phonons as well as negligible
effects at finite frequencies. We conclude that scattering
from Holstein phonons can be neglected in the usual transport
properties.

The effect of lattice vibrations on the electronic properties
of graphene is still not fully understood. The coupling
of substrate phonons [36] or in-plane oscillations to the
conduction electrons is especially interesting. In the later case,
this will lead to a non-diagonal electronic self-energy due to
the current–current coupling.
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Appendix. Momentum integrals

The momentum integrals have the form (n = 0, 1)

In =
∫

k2n+1dk

[(A − k)2 + B2][(C − k)2 + D2] . (A.1)

The general solution yields

In = −1

G

[
Fn

1 tan−1

(
A − k

B

)
+ Fn

2 tan−1

(
C − k

D

)

− Fn
3 ln

(
(A − k)2 + B2

) − Fn
4 ln

(
(C − k)2 + D2

) ]
,

(A.2)

where the denominator reads G = (B2 + (A −C)2)2 +2((A −
C)2 − B2)D2 + D4 and the factors are given by

F0
1 = 4D(A3 − 2A2C − 2B2C + A(B2 + C2 + D2)),

F0
2 = 4B((B2 + (A − C)2)C + (−2A + C)D2),

F0
3 = −F0

4 = 2B D(−A2 − B2 + C2 + D2)
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and

F1
1 = 4D(A5 − 2A4C + 2B4C + A3(2B2 + C2 + D2)

+ AB2(B2 − 3(C2 + D2))),

F1
2 = 4B((B2 + (A − C)2)C3 + C(−3(A2 + B2) + 2C2)D2

+ (2A + C)D4),

F1
3 = 2B D(A4 − 4A3C − 4AB2C + B2(B2 − C2 − D2)

+ A2(2B2 + 3(C2 + D2))),

F1
4 = 2B D(C2(3(A2 + B2) − 4AC + C2)

− (A2 + B2 + 4AC − 2C2)D2 + D4).
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